Albert Einstein, Su Vida y Su Universo

Albert Einstein es uno de los científicos mas importantes de la historia y un icono del siglo XX. ¿Como funcionaba su mente?¿Qué le hizo un genio?¿Como era el ser humano detras del personaje publico? Su fascinante historia demuestra la relación entre creatividad y libertad.

Solvay 1927, la foto que es Historia de la Ciencia

La historia está trufada de grandes nombres de la física, genios que han hecho avanzar nuestro conocimiento sobre la naturaleza y el universo. Sin embargo, no es fácil que muchos de ellos coincidan en una misma época y lugar, con una memorable salvedad: el congreso de Solvay de 1927.

Stephen Hawking, el físico británico que revolucionó nuestra manera de entender el universo

Hawking padecía desde joven una enfermedad motoneuronal relacionada con la esclerosis lateral amiotrófica. El físico británico Stephen Hawking falleció el 14 de marzo de 2018 a los 76 años, según informó su familia. Se fue así uno de los científicos más prestigiosos y uno de los divulgadores más populares de las últimas décadas.

Richard Feynman, el premio Nobel que investigaba en bares de 'striptease'

“Creo que puedo decir con seguridad que nadie entiende la mecánica cuántica”. Es una de las citas más repetidas de Richard Feynman y es sin duda una frase insólita en labios de un físico. Pero las palabras cobran sentido cuando se entiende cómo funcionaban los finos engranajes mentales de quien fue, además de una de las más reputadas figuras de la física teórica de todos los tiempos, uno de los científicos más populares del siglo XX.

El Gato de Schrödinger y la Mecánica Quántica

La mecánica cuántica asegura que el mundo en que vivimos es extraño. Para muchos, aún más extraño de lo que nos podíamos imaginar, y es que describe fenómenos que escapan a nuestras intuiciones habituales. Fenómenos que, incluso, se muestran como paradojas, en contra, precisamente, de esas intuiciones tan arraigadas. Este es el caso del famoso "Gato de Schrödinger", una de las paradojas fundamentales que la teoría presenta.

Newton, Leibniz y El Cálculo

Todo empezó en Europa a finales del siglo XVII. Dos excepcionales matemáticos estaban trabajando en el mismo problema al mismo tiempo. Isaac Newton, ese gran héroe de la ciencia británica, tenía poco más de 20 años cuando comenzó a trabajar en una nueva rama de las matemáticas, Newton se la describió a sus amigos, pero no publicó nada sobre ella. Esa decisión más tarde tendría consecuencias desagradables pues, al mismo tiempo, el joven erudito alemán Gottfried Wilhelm Leibniz propuso una versión diferente de la misma cosa. Se trataba del cálculo.

martes, 1 de junio de 2021

Fundamentals of Mathematical Analysis (Adel N. Boules)

 


Fundamentals of Mathematical Analysis explores real and functional analysis with a substantial component on topology. The three leading chapters furnish background information on the real and complex number fields, a concise introduction to set theory, and a rigorous treatment of vector spaces.

Fundamentals of Mathematical Analysis is an extensive study of metric spaces, including the core topics of completeness, compactness and function spaces, with a good number of applications. The later chapters consist of an introduction to general topology, a classical treatment of Banach and Hilbert spaces, the elements of operator theory, and a deep account of measure and integration theories. Several courses can be based on the book. This book is suitable for a two-semester course on analysis, and material can be chosen to design one-semester courses on topology or real analysis. It is designed as an accessible classical introduction to the subject and aims to achieve excellent breadth and depth and contains an abundance of examples and exercises. The topics are carefully sequenced, the proofs are detailed, and the writing style is clear and concise. The only prerequisites assumed are a thorough understanding of undergraduate real analysis and linear algebra, and a degree of mathematical maturity.


DOWNLOAD

Fundamental Mathematical Analysis (Robert Magnus)

 


This textbook offers a comprehensive undergraduate course in real analysis in one variable. Taking the view that analysis can only be properly appreciated as a rigorous theory, the book recognises the difficulties that students experience when encountering this theory for the first time, carefully addressing them throughout.

Historically, it was the precise description of real numbers and the correct definition of limit that placed analysis on a solid foundation. The book therefore begins with these crucial ideas and the fundamental notion of sequence. Infinite series are then introduced, followed by the key concept of continuity. These lay the groundwork for differential and integral calculus, which are carefully covered in the following chapters. Pointers for further study are included throughout the book, and for the more adventurous there is a selection of "nuggets", exciting topics not commonly discussed at this level. Examples of nuggets include Newton's method, the irrationality of π, Bernoulli numbers, and the Gamma function.

Based on decades of teaching experience, this book is written with the undergraduate student in mind. A large number of exercises, many with hints, provide the practice necessary for learning, while the included "nuggets" provide opportunities to deepen understanding and broaden horizons.




Calculus: A Complete Course, 9th edition (Robert A. Adams Christopher Essex)

 


Proven in North America and abroad, this classic text has earned a reputation for excellent accuracy and mathematical rigour.  Previous editions have been praised for providing complete and precise statements of theorems, using geometric reasoning in applied problems, and for offering a range of applications across the sciences.  Written in a clear, coherent, and readable form, Calculus: A Complete Course makes student comprehension a clear priority.


DOWNLOAD

How to Solve Word Problems in Calculus

 


Considered to be the hardest mathematical problems to solve, word problems continue to terrify students across all math disciplines. This new title in the World Problems series demystifies these difficult problems once and for all by showing even the most math-phobic readers simple, step-by-step tips and techniques. How to Solve World Problems in Calculus reviews important concepts in calculus and provides solved problems and step-by-step solutions. Once students have mastered the basic approaches to solving calculus word problems, they will confidently apply these new mathematical principles to even the most challenging advanced problems. Each chapter features an introduction to a problem type, definitions, related theorems, and formulas. Topics range from vital pre-calculus review to traditional calculus first-course content. Sample problems with solutions and a 50-problem chapter are ideal for self-testing. Fully explained examples with step-by-step solutions.


DOWNLOAD

Infinite Powers: How Calculus Reveals the Secrets of the Universe

 


A brilliant and endlessly appealing explanation of calculus—how it works and why it makes our lives immeasurably better.

Without calculus, we wouldn’t have cell phones, TV, GPS, or ultrasound. We wouldn’t have unraveled DNA or discovered Neptune or figured out how to put 5,000 songs in your pocket.

Though many of us were scared away from this essential, engrossing subject in high school and college, Steven Strogatz’s brilliantly creative, down to earth history shows that calculus is not about complexity; it’s about simplicity. It harnesses an unreal number—infinity—to tackle real world problems, breaking them down into easier ones and then reassembling the answers into solutions that feel miraculous.

Infinite Powers recounts how calculus tantalized and thrilled its inventors, starting with its first glimmers in ancient Greece and bringing us right up to the discovery of gravitational waves (a phenomenon predicted by calculus). Strogatz reveals how this form of math rose to the challenges of each age: how to determine the area of a circle with only sand and a stick; how to explain why Mars goes “backwards” sometimes; how to make electricity with magnets; how to ensure your rocket doesn’t miss the moon; how to turn the tide in the fight against AIDS.

As Strogatz proves, calculus is truly the language of the universe. By unveiling the principles of that language, Infinite Powers makes us marvel at the world anew.


Mathematical Analysis, Probability and Applications – Plenary Lectures

Introduction

This book collects lectures given by the plenary speakers at the 10th International ISAAC Congress, held in Macau, China in 2015. The contributions, authored by eminent specialists, present some of the most exciting recent developments in mathematical analysis, probability theory, and related applications. Topics include: partial differential equations in mathematical physics, Fourier analysis, probability and Brownian motion, numerical analysis, and reproducing kernels. The volume also presents a lecture on the visual exploration of complex functions using the domain coloring technique. Thanks to the accessible style used, readers only need a basic command of calculus.